Testing the applicability of neural networks as a gap-filling method using CH<sub>4</sub> flux data from high latitude wetlands
-
Published:2013-12-11
Issue:12
Volume:10
Page:8185-8200
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Dengel S., Zona D.ORCID, Sachs T.ORCID, Aurela M.ORCID, Jammet M., Parmentier F. J. W.ORCID, Oechel W.ORCID, Vesala T.
Abstract
Abstract. Since the advancement in CH4 gas analyser technology and its applicability to eddy covariance flux measurements, monitoring of CH4 emissions is becoming more widespread. In order to accurately determine the greenhouse gas balance, high quality gap-free data is required. Currently there is still no consensus on CH4 gap-filling methods, and methods applied are still study-dependent and often carried out on low resolution, daily data. In the current study, we applied artificial neural networks to six distinctively different CH4 time series from high latitudes, explain the method and test its functionality. We discuss the applicability of neural networks in CH4 flux studies, the advantages and disadvantages of this method, and what information we were able to extract from such models. Three different approaches were tested by including drivers such as air and soil temperature, barometric air pressure, solar radiation, wind direction (indicator of source location) and in addition the lagged effect of water table depth and precipitation. In keeping with the principle of parsimony, we included up to five of these variables traditionally measured at CH4 flux measurement sites. Fuzzy sets were included representing the seasonal change and time of day. High Pearson correlation coefficients (r) of up to 0.97 achieved in the final analysis are indicative for the high performance of neural networks and their applicability as a gap-filling method for CH4 flux data time series. This novel approach which we show to be appropriate for CH4 fluxes is a step towards standardising CH4 gap-filling protocols.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference89 articles.
1. Amari, S., Murata, N, Müller, K.-R., Finke, M., and Yang, M. H.: Asymptotic statistical theory of overtraining and cross-validation, IEEE T. Neural Networ., 8, 985–996, 1997. 2. Anisimov, O. A.: Potential feedback of thawing permafrost to the global climate system through methane emission, Environ. Res. Lett., 2, 045016, https://doi.org/10.1088/1748-9326/2/4/045016, 2007. 3. Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175, 2000. 4. Aurela, M., Lohila, A., Tuovinen, J. P., Hatakka, J., Riutta, T., and Laurila, T.: Carbon dioxide exchange on a northern boreal fen., Boreal Environ. Res., 14, 699–710, 2009. 5. Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems, past, present and future, Glob. Change Biol., 9, 479–492, 2003.
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|