Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties
-
Published:2021-06-15
Issue:6
Volume:15
Page:2683-2699
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Berdahl MiraORCID, Leguy GunterORCID, Lipscomb William H.ORCID, Urban Nathan M.
Abstract
Abstract. Antarctic ice shelves are vulnerable to warming ocean temperatures, and some have already begun thinning in response to increased basal melt rates.
Sea level is therefore expected to rise due to Antarctic contributions, but uncertainties in its amount and timing remain largely unquantified. In particular, there is substantial uncertainty in future basal melt rates arising from multi-model differences in thermal forcing and how melt rates depend on that thermal forcing. To facilitate uncertainty quantification in sea level rise projections, we build, validate, and demonstrate projections from a computationally efficient statistical emulator of a high-resolution (4 km) Antarctic ice sheet model, the Community Ice Sheet Model version 2.1. The emulator is trained to a large (500-member) ensemble of 200-year-long 4 km resolution transient ice sheet simulations, whereby regional basal melt rates are perturbed by idealized (yet physically informed) trajectories. The main advantage of our emulation approach is that by sampling a wide range of possible basal melt trajectories, the emulator can be used to (1) produce probabilistic sea level rise projections over much larger Monte Carlo ensembles than are possible by direct numerical simulation alone, thereby providing better statistical characterization of uncertainties, and (2) predict the simulated ice sheet response under differing assumptions about basal melt characteristics as new oceanographic studies are published, without having to run additional numerical ice sheet simulations. As a proof of concept, we propagate uncertainties about future basal melt rate trajectories, derived from regional ocean models, to generate probabilistic sea level rise estimates for 100 and 200 years into the future.
Funder
Los Alamos National Laboratory
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference87 articles.
1. Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a 2. Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
simulating and parameterizing interactions between the Southern Ocean and the
Antarctic ice sheet, Current Climate Change Reports, 3, 316–329, 2017. a 3. Bakker, A. M., Louchard, D., and Keller, K.: Sources and implications of deep
uncertainties surrounding sea-level projections, Climatic Change, 140,
339–347, 2017. a 4. Bamber, J. L. and Aspinall, W.: An expert judgement assessment of future sea
level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, 2013. a 5. Berdahl, M.: mberdahl-uw/TheCryosphere-CISM_emulator: CISM Emulator Code and data (Version 1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4902149, 2021. a
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|