Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey

Author:

Şorman A. Ü.,Akyürek Z.,Şensoy A.,Şorman A. A.,Tekeli A. E.

Abstract

Abstract. The MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blösch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002–2003 and 2003–2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent (SWE) values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3