Assessing the model performance of an integrated hydrological and biogeochemical model for discharge and nitrate load predictions

Author:

Pohlert T.,Breuer L.,Huisman J. A.,Frede H.-G.

Abstract

Abstract. In this study, we evaluate the performance of the SWAT-N model, a modified version of the widely used SWAT version, for discharge and nitrate predictions at the mesoscale Dill catchment (Germany) for a 5-year period. The underlying question is, whether the model efficiency is sufficient for scenario analysis of land-use changes on both water quantity and quality. The Shuffled Complex Evolution (SCE-UA) algorithm is used to calibrate the model for daily discharge at the catchments outlet. Model performance is assessed with a split-sampling as well as a proxy-basin test using recorded hydrographs of four additional gauges located within the catchment. The efficiency regarding nitrate load simulation is assessed without further calibration on a daily, log-daily, weekly, and monthly basis as compared to observations derived from an intensive sampling campaign conducted at the catchments outlet. A new approach is employed to test the spatial consistency of the model, where simulated longitudinal profiles of nitrate concentrations were compared with observed longitudinal profiles. It is concluded that the model efficiency of SWAT-N is sufficient for the assessment of scenarios for daily discharge predictions. SWAT-N can be employed without further calibration for nitrate load simulations on both a weekly and monthly basis with an acceptable degree of accuracy. However, the model efficiency for daily nitrate load is insufficient, which can be attributed to both data uncertainty (i.e. point-source effluents and actual farming practise) as well as structural errors. The simulated longitudinal profiles meet the observations reasonably well, which suggests that the model is spatially consistent.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference70 articles.

1. 2000/60/EG: Richtlinie 2000/60/EG des europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik, ABl. EG, pp. L 327/1–L 327/27, 2000.

2. AG Boden: Bodenkundliche Kartieranleitung, Schweizbart'sche Verlagsbuchhandlung, Hannover, 4 edn., 1994.

3. Angstrøm, A.: Solar and terrestrial radiation, Q. J. R. Meteorol. Soc., 50, 121–125, 1924.

4. Arheimer, B. and Brandt, M.: Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27, 471–480, 1998.

5. Arnold, J., Srinivasan, R., Muttiah, R., and Williams, J.: Large area hydrologic modeling and assessment – Part 1: Model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3