The role of catchment characteristics in determining surface water nitrogen in four upland regions in the UK

Author:

Helliwell R. C.,Coull M. C.,Davies J. J. L.,Evans C. D.,Norris D.,Ferrier R. C.,Jenkins A.,Reynolds B.

Abstract

Abstract. Hydrochemical and catchment data from 80 upland moorland sites in four regions with contrasting climate, soils, geology and geomorphology have been analysed to assess the key catchment attributes that influence enhanced leaching of soluble nitrogen to surface waters. The regions are the South Pennines of northern England, the Snowdonia National Park in north Wales, the Galloway region of south-west Scotland and the Mourne Mountains in Northern Ireland, all highly acidified, with median pH values of <5.5. Linear regression of mean summer and winter concentrations for nitrate (NO3−), ammonium (NH4+), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) were expressed as functions of catchment attributes. Nitrate concentrations in waters draining catchments dominated by peaty soils (large C pool) were much less than those in catchments dominated by mineral soils (small C pool). Hence, if future N deposition levels are maintained or increase, high-altitude catchments with small carbon pools are potentially more susceptible to NO3− leaching. All N species exhibit seasonality; this is most marked in Galloway and least marked in the South Pennines, which implies that the South Pennines have reached an advanced stage of N saturation. Surface water inorganic N concentrations and the ratio of dissolved organic carbon (DOC) to dissolved organic N (DON) can be related to deposition inputs, although relationships differ throughout the year. If the DOC/DON ratio is indicative of catchment N saturation, levels of N retention are at least partially determined by deposition levels. This study identifies N deposition as a major inter-regional control on the degree of catchment N saturation and on N leaching to surface waters; it stresses the importance of catchment factors in modifying the relationship between N deposition and leaching in acid sensitive UK upland catchments.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3