Author:
McGillen M. R.,Percival C. J.,Pieterse G.,Watson L. A.,Shallcross D. E.
Abstract
Abstract. The reactivity of aromatic compounds is of great relevance to pure and applied chemical disciplines, yet existing methods for estimating gas-phase rate coefficients for their reactions with free radicals lack accuracy and universality. Here a novel approach is taken, whereby strong relationships between rate coefficients of aromatic hydrocarbons and a Randić-type topological index are investigated, optimized and developed into a method which requires no specialist software or computing power. Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons with OH radicals were correlated with a calculated Randić-type index, and optimized by including a term for side chain length. Although this method is exclusively for use with hydrocarbons, it is more diverse than any single existing methodology since it incorporates alkenylbenzenes into correlations, and can be extended towards other radical species such as O(3P) (and tentatively NO3, H and Cl). A comparison (with species common to both techniques) is made between the topological approach advocated here and a popular approach based on electrophilic subsituent constants, where it compares favourably. A modelling study was carried out to assess the impact of using estimated rate coefficients as opposed to measured data in an atmospheric model. The difference in model output was negligible for a range of NOx concentrations, which implies that this method has utility in complex chemical models. Strong relationships (e.g. for OH, R2=0.96) between seemingly diverse compounds including benzene, multisubstituted benzenes with saturated, unsaturated, aliphatic and cyclic substitutions and the nonbenzenoid aromatic, azulene suggests that the Randić-type index presented here represents a new and effective way of describing aromatic reactivity, based on a quantitative structure-activity relationship (QSAR).
Reference46 articles.
1. Anderson, R. S., Czuba, E., Ernst, D., Huang, L., Thompson, A. E., and Rudolph, J.: Method for measuring carbon kinetic isotope effects of gas-phase reactions of light hydrocarbons with the hydroxyl radical, J. Phys. Chem. A, 107, 6191–6199, 2003.
2. AQIRP: Effects of gasolineT50, T90 and sulfur on exhaust emissions of current and future technology vehicles, Auto/Oil Air Quality Improvement Research Program, Technical Bulletin No 18, 1995.
3. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, 1986.
4. Atkinson, R.: A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds, Int. J. Chem. Kinet., 19, 799–828, 1987.
5. Atkinson, R.: Atmospheric lifetimes of dibenzo-para-dioxins and dibenzofurans, Sci. Total Environ., 104, 17–33, 1991
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献