Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with <i>Zea mays</i> colonized by arbuscular mycorrhizal fungi

Author:

Verlinden Melanie S.ORCID,AbdElgawad Hamada,Ven Arne,Verryckt Lore T.ORCID,Wieneke Sebastian,Janssens Ivan A.,Vicca SaraORCID

Abstract

Abstract. Phosphorus (P) is an essential macronutrient for plant growth and one of the least available nutrients in soil. P limitation is often a major constraint for plant growth globally. Although P addition experiments have been carried out to study the long-term effects on yield, data on P addition effects on seasonal variation in leaf-level photosynthesis are scarce. Arbuscular mycorrhizal fungi (AMF) can be of major importance for plant nutrient uptake, and AMF growth may be important for explaining temporal patterns in leaf physiology. In a nitrogen (N) and P fertilization experiment with Zea mays, we investigated the effect of P limitation on leaf pigments and leaf enzymes, how these relate to leaf-level photosynthesis, and how these relationships change during the growing season. A previous study on this experiment indicated that N availability was generally high, and as a consequence, N addition did not affect plant growth, and also the leaf measurements in the current study were unaffected by N addition. Contrary to N addition, P addition strongly influenced plant growth and leaf-level measurements. At low soil P availability, leaf-level photosynthetic and respiratory activity strongly decreased, and this was associated with reduced chlorophyll and photosynthetic enzymes. Contrary to the expected increase in P stress over time following gradual soil P depletion, plant P limitation decreased over time. For most leaf-level processes, pigments and enzymes under study, the fertilization effect had even disappeared 2 months after planting. Our results point towards a key role for the AMF symbiosis and consequent increase in P uptake in explaining the vanishing P stress.

Funder

Fonds Wetenschappelijk Onderzoek

H2020 European Research Council

European Cooperation in Science and Technology

H2020 Marie Skłodowska-Curie Actions

Universiteit Antwerpen

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference86 articles.

1. AbdElgawad, H., Avramova, V., Baggerman, G., Van Raemdonck, G., Valkenborg, D., Van Ostade, X., Guisez, Y., Prinsen, E., Asard, H., Van den Ende, W., Gerrit, T. S., and Beemster, G. T. S.: Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize, Plant Cell Environ., 43, 2254–2271, https://doi.org/10.1111/pce.13813, 2020.

2. AbdElgawad, H., Peshev, D., Zinta, G., Van den Ende, W., Janssens, I. A., and Asard, H.: Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-Fructan accumulators, Plos One, 9, e92044, https://doi.org/10.1371/journal.pone.0092044, 2014.

3. Ashraf, M. and Harris, P. J. C.: Photosynthesis under stressful environments: An overview, Photosynthetica, 51, 163–190, https://doi.org/10.1007/s11099-013-0021-6, 2013.

4. Atkin, O. K., Turnbull, M. H., Zaragoza-Castells, J., Fyllas, N. M., Lloyd J., Meir, P., and Griffin, K. L.: Increased light inhibition of respiration as soil fertility declines along a post-glacial chronosequence in New Zealand, Plant Soil, 367, 163–182, https://doi.org/10.1007/s11104-013-1686-0, 2013.

5. Augé, R. M., Toler, H. D., and Saxton, A. M.: Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression, Front. Plant Sci., 7, 1084, https://doi.org/10.3389/fpls.2016.01084, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3