Lagrange-method-based dynamic analysis of multi-stage planetary roller screw mechanism

Author:

Li Xin,Liu Geng,Fu Xiaojun,Ma Shangjun

Abstract

Abstract. A rigid-body dynamic model of multi-stage planetary roller screw mechanism (multi-stage PRSM) is proposed in this paper. The structure of multi-stage PRSM is introduced and the motion analysis is presented. The total kinetic energy of the mechanism is calculated. The rotation of the screws and carriers is chosen as generalized degrees of freedom. The generalized forces and motion equations of multi-stage PRSM are derived using the Lagrange method. The transient and steady-state behaviours of multi-stage PRSM are simulated, followed by an analysis of the influence of friction coefficients and thread pitches on the motion and forces acting on the multi-stage PRSM. Taking a two-stage PRSM as an example, the simulation results show that the friction coefficient between screw #1 and screw #2 has a slight effect on efficiency and rotational velocity ratios of carriers to screws. When the sum of the pitches of screws is a constant, the axial component of contact force between screw #1 and roller #1 decreases with the increase in the pitch of screw #1.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Industrial and Manufacturing Engineering,Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel static model of planetary roller screw mechanisms based on an energy method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-09-03

2. Precise pose control of shaft boring machine considering the characteristic of stratum;Measurement;2024-09

3. Review on errors and transmission characteristics of the planetary roller screw mechanism;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-08

4. A comprehensive analysis of contact kinematics for planetary roller screw mechanism;Tribology International;2023-01

5. A novel wear prediction model for planetary roller screw based on universal sliding distance model;Tribology International;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3