Large differences of highly oxygenated organic molecules (HOMs) and low-volatile species in secondary organic aerosols (SOAs) formed from ozonolysis of β-pinene and limonene

Author:

Liu Dandan,Zhang Yun,Zhong Shujun,Chen Shuang,Xie Qiaorong,Zhang Donghuan,Zhang Qiang,Hu WeiORCID,Deng JunjunORCID,Wu Libin,Ma Chao,Tong HaijieORCID,Fu PingqingORCID

Abstract

Abstract. Secondary organic aerosols (SOAs) play a key role in climate change and public health. However, the oxidation state and volatility of SOAs are still not well understood. Here, we investigated the highly oxygenated organic molecules (HOMs) in SOAs formed from ozonolysis of β-pinene and limonene. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize HOMs in aerosol filter samples, and a scanning mobility particle sizer (SMPS) was used to measure the concentration and size distribution of SOA particles. The relative abundance of HOMs (i.e., ratio of summed mass spectrometry peak intensity of HOMs to totally identified organic compounds) in limonene SOA was 14 %–20 %, higher than in β-pinene SOA (3 %–13 %), exhibiting different trends with increasing ozone concentrations. β-pinene oxidation-derived HOMs exhibit higher yield at high ozone concentration, accompanied by substantial formation of ultra-low-volatile organic compounds (ULVOCs). Limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentrations, with semi-, low-, and extremely low-volatile organic compounds (SVOCs, LOVCs, and ELVOCs) play a major role. Combined experimental evidence and theoretical analysis indicate that oxygen-increasing-based peroxy radical chemistry is a plausible mechanism for the formation of oxygenated organic compounds with 10 carbon atoms. Our findings show that HOMs and low-volatile species in β-pinene and limonene SOA are largely different. The ozone concentration-driven SOA formation and evolution mechanism for monoterpenes is suggested to be considered in future climate or exposure risk models, which may enable more accurate air quality prediction and management.

Funder

National Natural Science Foundation of China

Tianjin Research Innovation Project for Postgraduate Students

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3