Impact of fossil and non-fossil fuel sources on the molecular compositions of water-soluble humic-like substances in PM2.5 at a suburban site of Yangtze River Delta, China

Author:

Bao Mengying,Zhang Yan-LinORCID,Cao Fang,Hong YihangORCID,Lin Yu-Chi,Yu Mingyuan,Jiang HongxingORCID,Cheng Zhineng,Xu Rongshuang,Yang Xiaoying

Abstract

Abstract. Atmospheric humic-like substances (HULIS) affect the global radiation balance due to their strong light absorption at the ultraviolet wavelength. The potential sources and molecular compositions of water-soluble HULIS at a suburban site in the Yangtze River Delta from 2017 to 2018 were discussed, based on the results of the radiocarbon (14C) analysis and combining the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) technique in this study. The 14C results showed that the averaged non-fossil-fuel source contributions to HULIS were 39 ± 8 % and 36 ± 6 % in summer and winter, respectively, indicating significant contributions from fossil fuel sources to HULIS. The Van Krevelen diagrams obtained from the FT-ICR-MS results showed that the proportions of tannin-like and carbohydrate-like groups were higher in summer, suggesting significant contribution of HULIS from biogenic secondary organic aerosols (SOAs). The higher proportions of condensed aromatic structures in winter suggested increasing anthropogenic emissions. Molecular composition analysis on the CHO, CHON, CHOS, and CHONS subgroups showed relatively higher intensities of high O-containing macromolecular oligomers in the CHO compounds in summer, further indicating stronger biogenic SOA formation in summer. High-intensity phenolic substances and flavonoids, which were related to biomass burning and polycyclic aromatic hydrocarbon (PAH) derivatives indicating fossil fuel combustion emissions, were found in winter CHO compounds. Besides, two high-intensity CHO compounds containing condensed aromatic ring structures (C9H6O7 and C10H5O8) identified in the summer and winter samples were similar to those from off-road engine samples, indicating that traffic emissions were one of the important fossil fuel sources of HULIS at the study site. The CHON compounds were mainly composed of nitro compounds or organonitrates with significantly higher intensities in winter, which were associated with biomass burning emissions, in addition to the enhanced formation of organonitrates due to high NOx in winter. However, the high-intensity CHON molecular formulas in summer were referring to N-heterocyclic aromatic compounds, which were produced from the atmospheric secondary processes involving reduced N species (e.g., ammonium). The S-containing compounds were mainly composed of organosulfates (OSs) derived from biogenic precursors, namely long-chain alkane and aromatic hydrocarbon, which illustrate the mixed sources of HULIS. Generally, different policies need to be considered for each season due to the different seasonal sources (i.e., biogenic emissions in summer and biomass burning in winter for non-fossil-fuel sources, traffic emissions and anthropogenic SOA formation in both seasons, and additional coal combustion in winter). Measures to control emissions from motor vehicles and industrial processes need to be considered in summer. Additional control measures on coal power plants and biomass burning should be applied in winter. These findings add to our understanding of the interaction between the sources and the molecular compositions of atmospheric HULIS.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference109 articles.

1. Aiona, P. K., Luek, J. L., Timko, S. A., Powers, L. C., Gonsior, M., and Nizkorodov, S. A.: Effect of photolysis on absorption and fluorescence spectra of light-absorbing secondary organic aerosols, ACS Earth Space Chem., 2, 235–245, https://doi.org/10.1021/acsearthspacechem.7b00153, 2018.

2. Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476–1490, https://doi.org/10.1016/j.atmosenv.2007.11.015, 2008.

3. Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009.

4. Bao, M., Zhang, Y. L., Cao, F., Lin, Y. C., Hong, Y., Fan, M., Zhang, Y., Yang, X., and Xie, F.: Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China, Environ. Res., 206, 112554, https://doi.org/10.1016/j.envres.2021.112554, 2022.

5. Berndt, T., Mender, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion product formation from ozonolysis and OH radical reaction of alpha-Pinene: mechanistic insight and the influence of isoprene and ethylene, Environ. Sci. Technol., 52, 11069–11077, https://doi.org/10.1021/acs.est.8b02210, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3