Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India

Author:

Gogoi Mukunda M.,Babu S. Suresh,Imasu Ryoichi,Hashimoto Makiko

Abstract

Abstract. Light-absorbing black carbon (BC) aerosols strongly affect Earth's radiation budget and climate. This paper presents satellite retrieval of BC over India based on observations from the Cloud and Aerosol Imager-2 (CAI-2) on board the Greenhouse gases Observing Satellite-2 (GOSAT-2). To evaluate and validate the satellite retrievals, near-surface BC mass concentrations measured across the Aerosol Radiative Forcing over India NETwork (ARFINET) of aerosol observatories are used. Then the findings are extended to elucidate global BC features. The analysis reveals that this satellite retrieval clearly demonstrates the regional and seasonal features of BC over the Indian region, similarly to those recorded by surface observations. Validation and closure studies between the two datasets show RMSE < 1 and absolute difference below 2 µg m−3 for > 60 % of simultaneous observations, exhibiting good associations for December, January, and February (R of approximately 0.73) and March, April, and May (R approx. 0.76). Over the hotspot regions of India, satellite retrievals show a soot volume fraction of approx. 5 %, columnar single-scattering albedo of approx. 0.8, and BC column optical depth of approx. 0.1 during times of the highest BC loading, which are comparable to other in situ and satellite measurements. In terms of global spatiotemporal variation, satellite retrievals show higher BC occurring mostly in areas where biomass burning is intense. Overall, this study highlights the effectiveness of satellite retrieval of BC, which can be used effectively for the regular monitoring of BC loading attributable to vehicular, industrial, or biomass burning activities.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3