Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios

Author:

Luo HaoORCID,Quaas JohannesORCID,Han Yong

Abstract

Abstract. Clouds exhibit a wide range of vertical morphologies that are regulated by distinct atmospheric dynamics and thermodynamics and are related to a diversity of microphysical properties and radiative effects. In this study, the new CERES-CloudSat-CALIPSO-MODIS (CCCM) RelD1 dataset is used to investigate the morphology and spatial distribution of different cloud vertical structure (CVS) types during 2007–2010. The combined active and passive satellites provide a more precise CVS than those only based on passive imagers or microwave radiometers. We group the clouds into 12 CVS classes based on how they are located or overlapping in three standard atmospheric layers with pressure thresholds of 440 and 680 hPa. For each of the 12 CVS types, the global average cloud radiative effects (CREs) at the top of the atmosphere, within the atmosphere and at the surface, as well as the cloud heating rate (CHR) profiles are examined. The observations are subsequently used to evaluate the variations in total, high-, middle- and low-level cloud fractions in CMIP6 models. The “historical” experiment during 1850–2014 and two scenarios (ssp245 and ssp585) during 2015–2100 are analyzed. The observational results show a substantial difference in the spatial pattern among different CVS types, with the greatest contrast between high and low clouds. Single-layer cloud fraction is almost 4 times larger on average than multi-layer cloud fraction, with significant geographic differences associated with clearly distinguishable regimes, showing that overlapping clouds are regionally confined. The global average CREs reveal that four types of CVSs warm the planet, while eight of them cool it. The longwave component drives the net CHR profile, and the CHR profiles of multi-layer clouds are more curved and intricate than those of single-layer clouds, resulting in complex thermal stratifications. According to the long-term analysis from CMIP6, the projected total cloud fraction decreases faster over land than over the ocean. The high clouds over the ocean increase significantly, but other types of clouds over land and the ocean continue to decrease, helping to offset the decrease in oceanic total cloud fraction. Moreover, it is concluded that the spatial pattern of CVS types may not be significantly altered by climate change, and only the cloud fraction is influenced. Our findings suggest that long-term observed CVS should be emphasized in the future to better understand CVS responses to anthropogenic forcing and climate change.

Funder

National Natural Science Foundation of China

Southern Marine Science and Engineering Guangdong Laboratory

China Scholarship Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference88 articles.

1. Allan, R. P.: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Meteorol. Appl., 18, 324–333, https://doi.org/10.1002/met.285, 2011.

2. Bao, Y., Song, Z., and Qiao, F.: FIO-ESM Version 2.0: Model Description and Evaluation, J. Geophys. Res.-Oceans, 125, e2019JC016036, https://doi.org/10.1029/2019JC016036, 2020.

3. Betts, A. K. and Harshvardhan: Thermodynamic constraint on the cloud liquid water feedback in climate models, J. Geophys. Res.-Atmos., 92, 8483–8485, https://doi.org/10.1029/JD092iD07p08483, 1987.

4. Bi, D., Dix, M., Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., and Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model, Journal of Southern Hemisphere Earth Systems Science, 70, 225–251, https://doi.org/10.1071/ES19040, 2020.

5. Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, L. E., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3