Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon

Author:

Hunt Brian P. V.,Bonnet Sophie,Berthelot Hugo,Conroy Brandon J.ORCID,Foster Rachel A.,Pagano Marc

Abstract

Abstract. In oligotrophic tropical and subtropical oceans, where strong stratification can limit the replenishment of surface nitrate, dinitrogen (N2) fixation by diazotrophs can represent a significant source of nitrogen (N) for primary production. The VAHINE (VAriability of vertical and tropHIc transfer of fixed N2 in the south-wEst Pacific) experiment was designed to examine the fate of diazotroph-derived nitrogen (DDN) in such ecosystems. In austral summer 2013, three large ( ∼  50 m3) in situ mesocosms were deployed for 23 days in the New Caledonia lagoon, an ecosystem that typifies the low-nutrient, low-chlorophyll environment, to stimulate diazotroph production. The zooplankton component of the study aimed to measure the incorporation of DDN into zooplankton biomass, and assess the role of direct diazotroph grazing by zooplankton as a DDN uptake pathway. Inside the mesocosms, the diatom–diazotroph association (DDA) het-1 predominated during days 5–15 while the unicellular diazotrophic cyanobacteria UCYN-C predominated during days 15–23. A Trichodesmium bloom was observed in the lagoon (outside the mesocosms) towards the end of the experiment. The zooplankton community was dominated by copepods (63 % of total abundance) for the duration of the experiment. Using two-source N isotope mixing models we estimated a mean  ∼  28 % contribution of DDN to zooplankton nitrogen biomass at the start of the experiment, indicating that the natural summer peak of N2 fixation in the lagoon was already contributing significantly to the zooplankton. Stimulation of N2 fixation in the mesocosms corresponded with a generally low-level enhancement of DDN contribution to zooplankton nitrogen biomass, but with a peak of  ∼  73 % in mesocosm 1 following the UCYN-C bloom. qPCR analysis targeting four of the common diazotroph groups present in the mesocosms (Trichodesmium, het-1, het-2, UCYN-C) demonstrated that all four were ingested by copepod grazers, and that their abundance in copepod stomachs generally corresponded with their in situ abundance. 15N2 labelled grazing experiments therefore provided evidence for direct ingestion and assimilation of UCYN-C-derived N by the zooplankton, but not for het-1 and Trichodesmium, supporting an important role of secondary pathways of DDN to the zooplankton for the latter groups, i.e. DDN contributions to the dissolved N pool and uptake by nondiazotrophs. This study appears to provide the first evidence of direct UCYN-C grazing by zooplankton, and indicates that UCYN-C-derived N contributes significantly to the zooplankton food web in the New Caledonia lagoon through a combination of direct grazing and secondary pathways.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3