Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments
-
Published:2023-01-09
Issue:1
Volume:14
Page:1-16
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Qiu HanORCID, Hao DaleiORCID, Zeng Yelu, Zhang Xuesong, Chen Min
Abstract
Abstract. Climate warming is accelerating the changes in the global
terrestrial ecosystems and particularly those in the northern high latitudes
(NHLs; poleward of 50∘ N) and rendering the land–atmosphere
carbon exchange highly uncertain. The Coupled Model Intercomparison Project
Phase 6 (CMIP6) employs the most updated climate models to estimate
terrestrial ecosystem carbon dynamics driven by a new set of socioeconomic
and climate change pathways. By analyzing the future (2015–2100) carbon
fluxes estimated by 10 CMIP6 models, we quantitatively evaluated the
projected magnitudes, trends, and uncertainties in the global and NHL carbon
fluxes under four scenarios plus the role of NHLs in the global terrestrial
ecosystem carbon dynamics. Overall, the models suggest that the global and
NHL terrestrial ecosystems will be consistent carbon sinks in the future,
and the magnitude of the carbon sinks is projected to be larger under
scenarios with higher radiative forcing. By the end of this century, the
models on average estimate the NHL net ecosystem productivity (NEP) as
0.54 ± 0.77, 1.01 ± 0.98, 0.97 ± 1.62, and 1.05 ± 1.83 Pg C yr−1 under SSP126, SSP245, SSP370, and SSP585, respectively. The
uncertainties are not substantially reduced compared with earlier results,
e.g., the Coupled Climate–Carbon Cycle Model Intercomparison Project
(C4MIP). Although NHLs contribute a small fraction of the global carbon sink
(∼ 13 %), the relative uncertainties in NHL NEP are much
larger than the global level. Our results provide insights into future
carbon flux evolutions under future scenarios and highlight the urgent need
to constrain the large uncertainties associated with model projections for
making better climate mitigation strategies.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference80 articles.
1. Belshe, E. F., Schuur, E. A. G., Bolker, B. M., and Bracho, R.:
Incorporating spatial heterogeneity created by permafrost thaw into a
landscape carbon estimate, J. Geophys. Res.-Biogeo.,
117, G01026, https://doi.org/10.1029/2011JG001836, 2012. 2. Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M.,
Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B.
V., Burns, P., Zetterberg, P., D'Arrigo, R., and Goetz, S. J.: Summer
warming explains widespread but not uniform greening in the Arctic tundra
biome, Nat. Commun., 11, 4621,
https://doi.org/10.1038/s41467-020-18479-5, 2020. 3. Bentsen, M., Oliviè, D. J. L., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.8250, 2019. 4. Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature,
560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018. 5. Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton, T.:
IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5262, 2019.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|