Author:
Mangold A.,Grooß J.-U.,De Backer H.,Kirner O.,Ruhnke R.,Müller R.
Abstract
Abstract. Total column and stratospheric ozone levels at mid-latitudes often reveal strong fluctuations on time scales of days caused by dynamic processes. In some cases the total ozone column is distinctly reduced below climatological values. Here, a very low total ozone episode around 19 January 2006 over Western Europe is investigated when the observed total ozone column over Uccle (BE), measured by a Brewer spectrophotometer, reached a daily minimum of 200 DU, the lowest recorded value at this station. In order to investigate the mechanisms leading to the ozone minimum, the present study used data from (i) six ozone sounding stations in Western and Middle Europe, (ii) ECMWF meteorological fields, (iii) a simulation of the CLaMS model for January 2006, (iv) a multi-year run of the chemistry transport model KASIMA, and (v) a six-year run of the climate chemistry model ECHAM5/MESSy1. The ozone decrease at different heights was quantified and it was determined to what extent different transport mechanisms, and instantaneous, in-situ chemical ozone depletion contributed to the event. All three models reproduced well the evolution and formation of the event. The ozone column decrease between Θ=300 and 750 K was strongest at Uccle (BE) and De Bilt (NL) with 108 and 103 DU, respectively, and somewhat lower at Hohenpeissenberg (DE), Payerne (CH), Prague (CZ) and Lerwick (UK) with 85, 84, 83 and 74 DU, respectively. Our analysis demonstrated that mainly the displacement of the ozone depleted polar vortex contributed to the ozone column decrease (between 55 and 82%), compared to the advection of ozone-poor low-latitude air in the UTLS region, connected with divergence of air out of the column caused by uplift of isentropes in the lower stratosphere. This dominance was significant only at Lerwick, De Bilt and Uccle. Severe low total ozone episodes seem to occur preferentially when the two mentioned transport mechanisms occur at the same time. Instantaneous, in-situ chemical ozone depletion accounted for only 2±1% of the overall total ozone decrease at the sounding stations.
Reference59 articles.
1. Allen,~D R. and Nakamura,~N.: Dynamical reconstruction of the record low column ozone over Europe on 30 November, Geophys. Res. Lett., 29, 1362, https://doi.org/10.1029/2002GL014935, 2002.
2. Basher,~R E.: Review of the Dobson spectrophotometer and its accuracy, WMO Global ozone research and monitoring project, Report 13, WMO, Geneva, 1982.
3. Becker,~G., Müller,~R., McKenna,~D S., Rex,~M., and Carslaw,~K S.: Ozone loss rates in the Arctic stratosphere in the winter 1991/92: Model calculations compared with match results, Geophys. Res. Lett., 25, 4325–4328, 1998.
4. Bian,~H. and Prather,~M J.: Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models, J Atmos. Chem., 41, 281–296, 2002.
5. Biggs,~R H. and Joyner,~M E B. (Eds.): Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere, NATO ASI Ser. I 18, Kluwer Academic Publishers, Dordrecht, 358~pp., 1994.