Changes of the CO<sub>2</sub> and CH<sub>4</sub> production potential of rewetted fens in the perspective of temporal vegetation shifts

Author:

Zak D.,Reuter H.ORCID,Augustin J.,Shatwell T.ORCID,Barth M.,Gelbrecht J.,McInnes R. J.

Abstract

Abstract. Rewetting of long-term drained fens often results in the formation of eutrophic shallow lakes with an average water depth of less than 1 m. This is accompanied by a fast vegetation shift from cultivated grasses via submerged hydrophytes to helophytes. As a result of rapid plant dying and decomposition, these systems are highly dynamic wetlands characterised by a high mobilisation of nutrients and elevated emissions of CO2 and CH4. However, the impact of specific plant species on these phenomena is not clear. Therefore we investigated the CO2 and CH4 production due to the subaqueous decomposition of shoot biomass of five selected plant species which represent different rewetting stages (Phalaris arundinacea, Ceratophyllum demersum, Typha latifolia, Phragmites australis and Carex riparia) during a 154 day mesocosm study. Beside continuous gas flux measurements, we performed bulk chemical analysis of plant tissue, including carbon, nitrogen, phosphorus and plant polymer dynamics. Plant-specific mass losses after 154 days ranged from 25% (P. australis) to 64% (C. demersum). Substantial differences were found for the CH4 production with highest values from decomposing C. demersum (0.4 g CH4 kg−1 dry mass day) that were about 70 times higher than CH4 production from C. riparia. Thus, we found a strong divergence between mass loss of the litter and methane production during decomposition. If C. demersum as a hydrophyte is included in the statistical analysis solely nutrient contents (nitrogen and phosphorus) explain varying greenhouse gas production of the different plant species while lignin and polyphenols demonstrate no significant impact at all. Taking data of annual biomass production as important carbon source for methanogens into account, high CH4 emissions can be expected to last several decades as long as inundated and nutrient-rich conditions prevail. Different restoration measures like water level control, biomass extraction and top soil removal are discussed in the context of mitigation of CH4 emissions from rewetted fens.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3