Using open building data in the development of exposure data sets for catastrophe risk modelling

Author:

Figueiredo R.ORCID,Martina M.ORCID

Abstract

Abstract. One of the necessary components to perform catastrophe risk modelling is information on the buildings at risk, such as their spatial location, geometry, height, occupancy type and other characteristics. This is commonly referred to as the exposure model or data set. When modelling large areas, developing exposure data sets with the relevant information about every individual building is not practicable. Thus, census data at coarse spatial resolutions are often used as the starting point for the creation of such data sets, after which disaggregation to finer resolutions is carried out using different methods, based on proxies such as the population distribution. While these methods can produce acceptable results, they cannot be considered ideal. Nowadays, the availability of open data is increasing and it is possible to obtain information about buildings for some regions. Although this type of information is usually limited and, therefore, insufficient to generate an exposure data set, it can still be very useful in its elaboration. In this paper, we focus on how open building data can be used to develop a gridded exposure model by disaggregating existing census data at coarser resolutions. Furthermore, we analyse how the selection of the level of spatial resolution can impact the accuracy and precision of the model, and compare the results in terms of affected residential building areas, due to a flood event, between different models.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference17 articles.

1. Autorità di Bacino del fiume Po: Piano stralcio per l'Assetto Idrogeologico (PAI) – 7.II, Allegato 3 – Metodo di delimitazione delle fasce fluviali, Parma, 1999.

2. Bing Maps Team: Over 100 New Streetside and 3D Cities Go Live on Bing Maps (Blog post), available at: http://blogs.bing.com/maps/2014/08/20/over-100-new-streetside-and-3d-cities-go-live-on-bing-maps/, last access: 18 March 2015, 2014.

3. Bossard, M., Feranec, J., and Otahel, J.: CORINE land cover technical guide – Addendum 2000, European Environment Agency, Copenhagen, 2000.

4. Chen, K., McAneney, J., Blong, R., Leigh, R., Hunter, L., and Magill, C.: Defining area at risk and its effect in catastrophe loss estimation: a dasymetric mapping approach, Appl. Geogr., 24, 97–117, https://doi.org/10.1016/j.apgeog.2004.03.005, 2004.

5. Dell'Acqua, F., Gamba, P., and Jaiswal, K.: Spatial aspects of building and population exposure data and their implications for global earthquake exposure modeling, Nat. Hazards, 68, 1291–1309, https://doi.org/10.1007/s11069-012-0241-2, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3