Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff

Author:

D'Amato Julie,Hantz Didier,Guerin Antoine,Jaboyedoff MichelORCID,Baillet Laurent,Mariscal Armand

Abstract

Abstract. The influence of meteorological conditions on rockfall occurrence has been often highlighted, but knowledge of it is still not sufficient due to the lack of exhaustive and precise rockfall databases. In this study, rockfalls have been detected in a limestone cliff by annual terrestrial laser scanning, and dated by photographic survey over a period of 2.5 years. A near-continuous survey (one photo every 10 min) with a wide-angle lens has made it possible to date 214 rockfalls larger than 0.1 m3, and a monthly survey with a telephoto lens has dated 854 rockfalls larger than 0.01 m3. Analysis of the two databases shows that the rockfall frequency can be multiplied by a factor as high as 7 during freeze–thaw episodes and 26 when the mean rainfall intensity (since the beginning of the rainfall episode) is higher than 5 mmh−1. Based on these results, a three-level scale has been proposed for predicting the temporal variations of rockfall frequency. The more precise database and freeze–thaw episode definition make it possible to distinguish different phases in freeze–thaw episodes: negative temperature cooling periods, negative temperature warming periods and thawing periods. It appears that rockfalls occur more frequently during warming and thawing periods than during cooling periods. It can be inferred that rockfalls are caused by thermal ice dilatation rather than by dilatation due to the phase transition. But they may occur only when the ice melts, because the cohesion of the ice–rock interface can be sufficient to hold the rock compartment which has been cut.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3