Investigating the stomatal, cuticular and soil ammonia fluxes over a growing tritical crop under high acidic loads

Author:

Loubet B.,Decuq C.,Personne E.,Massad R. S.,Flechard C.,Fanucci O.,Mascher N.,Gueudet J.-C.,Masson S.,Durand B.,Genermont S.,Fauvel Y.,Cellier P.

Abstract

Abstract. Ammonia concentration and fluxes were measured above a growing triticale field for two months during May and June 2010 at the NitroEurope crop site in Grignon (Fr-Gri) near Paris, France. The measurement campaign started 15 days following a 40 kg N ha−1 application of an ammonium nitrate solution. A new mini-wedd (Wet Effluent Denuder) flow injection analyser with three channels (ROSAA, RObust and Sensitive Ammonia Analyser) was used to measure NH3 fluxes using the aerodynamic gradient method. The measured ammonia concentrations varied from 0.01 to 39 μg NH3 m−3 and were largely influenced by advection from the nearby farm. The ammonia fluxes ranged from –560 to 220 ng NH3 m−2 s−1 and averaged –29 ng NH3 m−2 s−1. During some periods the large deposition fluxes could only be explained by a very small surface resistance, which may be partly due to the high concentrations of certain acid gases (HNO3 and SO2) observed in this suburban area. Ammonia emissions were also observed. The canopy compensation point Cc was around 1.5 μg NH3 m−3 on average. The canopy emission potential Γc (Cc normalised for the temperature response of the Henry equilibrium) decreased over the course of the measurement campaign from Γc = 2200 to Γc = 450, the latter value being close to the median stomatal emission potential (Γs) and lower than the median ground emission potential (Γg) for managed ecosystems reported in the literature. The temporal dynamics of the measured NH3 flux compared well with the Surfatm-NH3 model using fitted parameters. The subjectivity of the model fitting is discussed based on a sensitivity analysis.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3