Controls on benthic biomass size spectra in shelf and deep-sea sediments – a modelling study

Author:

Kelly-Gerreyn B. A.,Anderson T. R.,Bett B. J.,Martin A. P.,Kaariainen J. I.

Abstract

Abstract. Factors controlling biomass distributions in marine benthic organisms (meio- to macro-fauna, 1 μg–32 mg wet weight) were investigated through observations and allometric modelling. Biomass (and abundance) size spectra were measured at three locations: the Faroe-Shetland Channel in the north-east Atlantic (FSC, water depth 1600 m, September 2000); the Fladen Ground in the North Sea (FG, 150 m, September 2000); and the hypoxic Oman Margin (OM, 500 m, September 2002) in the Arabian Sea. Biomass increased with body size through a power law at FG (allometric exponent, b = 0.16) and at FSC (b = 0.32), but less convincingly at OM (b was not significantly different from −1/4 or 0). Our results question the assumption that metazoan biomass spectra are bimodal in marine sediments. The model incorporated 16 metazoan size classes, as derived from the observed spectra, all reliant on a common detrital food pool. All physiological (ingestion, mortality, assimilation and respiration) parameters scaled to body size following optimisation to the data at each site, the resulting values being consistent within expectations from the literature. For all sites, body size related changes in mortality played the greatest role in determining the trend of the biomass size spectra. The body size trend in the respiration rate was most sensitive to allometry in both mortality and ingestion, and the trend in body size spectra of the production: biomass ratio was explained by the allometry in ingestion. Our results suggest that size-scaling mortality and ingestion are important factors determining the distribution of biomass across the meiofauna to macrofauna size range in marine sedimentary communities, in agreement with the general observation that biomass tends to accumulates in larger rather than smaller size classes in these environments.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3