Winter stream temperature in the rain-on-snow zone of the Pacific northwest: influences of hillslope runoff and transient snow cover
Author:
Leach J. A.,Moore R. D.
Abstract
Abstract. Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms the effects of energy exchanges at the stream surface during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that climatic warming may generate higher winter stream temperatures in the rain-on-snow zone due to both increased rain temperature and reduced cooling effect of snow cover.
Publisher
Copernicus GmbH
Reference91 articles.
1. Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R., and Hockman-Wert, D.: The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States, Geophys. Res. Lett., 39, L10401, https://doi.org/10.1029/2012GL051448, 2012. 2. Arismendi, I., Johnson, S. L., Dunham, J. B., and Haggerty, R.: Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America, Freshwater Biol., 58, 880–894, 2013. 3. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. 4. Bartholow, J.: Recent water temperature trends in the Lower Klamath River, California, N. Am. J. Fish. Manage., 25, 152–162, 2005. 5. Battin, J., Wiley, M. J., Ruckelshaus, M. H., Palmer, R. N., Korb, E., Bartz, K. K., and Imaki, H.: Projected impacts of future climate change on salmon habitat restoration actions in a Puget Sound River, P. Natl. Acad. Sci. USA, 104, 6720–6725, 2007.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|