Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances
Author:
Conradt T., Wechsung F., Bronstert A.ORCID
Abstract
Abstract. A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in Central Europe (148 268 km2) with the semi-distributed eco-hydrological model SWIM. While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different stategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. Further probable causes for epistemic uncertainties could be pinpointed. The results encourage careful utilisation of different data sources for calibration and validation procedures in distributed hydrological modelling.
Publisher
Copernicus GmbH
Reference141 articles.
1. Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol., 298, 112–135, https://doi.org/10.1016/j.jhydrol.2004.03.033, 2004. 2. Albertz, J.: Grundlagen der {I}nterpretation von {L}uft- und {S}atellitenbildern, Wissenschaftliche Buchgesellschaft, Darmstadt, 1991. 3. Andersen, J., Refsgaard, J. C., and Jensen, K. H.: Distributed hydrological modelling of the {S}enegal {R}iver {B}asin – model construction and validation, J. Hydrol., 247, 200–214, https://doi.org/10.1016/S0022-1694(01)00384-5, 2001. 4. Andréassian, V., Lerat, J., Loumagne, C., Mathevet, T., Michel, C., Oudin, L., and Perrin, C.: What is really undermining hydrologic science today?, Hydrol. Process., 21, 2819–2822, https://doi.org/10.1002/hyp.6854, 2007. 5. Andréassian, V., Le Moine, N., Perrin, C., Ramos, M.-H., Oudin, L., Mathevet, T., Lerat, J., and Berthet, L.: All that glitters is not gold: the case of calibrating hydrological models, Hydrol. Process., 26, 2206–2210, https://doi.org/10.1002/hyp.9264, 2012.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|