Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model
Author:
Sun Y., Hou Z., Huang M.ORCID, Tian F.ORCID, Leung L. R.ORCID
Abstract
Abstract. This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent – as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Publisher
Copernicus GmbH
Reference39 articles.
1. Allison, V. J., Miller, R. M., Jastrow, J. D., Matamala, R., and Zak, D. R.: Changes in Soil Microbial Community Structure in a Tallgrass Prairie Chronosequence, Soil Sci. Soc. Am. J., 69, 1412–1421, https://doi.org/10.2136/sssaj2004.0252, 2005. 2. Baer, S. G., Kitchen, D. J., Blair, J. M., and Rice, C. W.: Changes in ecosystem structure and function along a chronosequence of restored grasslands, Ecol. Appl., 12, 1688–1701, 10.1890/1051-0761(2002)012[1688:ciesaf]2.0.co;2, 2002. 3. Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992. 4. Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36, 3663–3674, https://doi.org/10.1029/2000wr900207, 2000. 5. Chen, J., Hoversten, G. M., Vasco, D., Rubin, Y., and Hou, Z.: Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling-based stochastic model, 2004 SEG Annual Meeting, 2004,
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|