Irrigated plantations and their effect on energy fluxes in a semi-arid region of Israel – a validated 3-D model simulation

Author:

Branch O.ORCID,Warrach-Sagi K.,Wulfmeyer V.ORCID,Cohen S.

Abstract

Abstract. A large irrigated biomass plantation was simulated in an arid region of Israel within the WRF-NOAH coupled atmospheric/land surface model in order to assess land surface atmosphere feedbacks. Simulations were carried out for the 2012 summer season (JJA). The irrigated plantations were simulated by prescribing tailored land surface and soil/plant parameters, and by implementing a newly devised, controllable sub-surface irrigation scheme within NOAH. Two model cases studies were considered and compared – Impact and Control. Impact simulates a hypothetical 10 km × 10 km irrigated plantation. Control represents a baseline and uses the existing land surface data, where the predominant land surface type in the area is bare desert soil. Central to the study is model validation against observations collected for the study over the same period. Surface meteorological and soil observations were made at a desert site and from a 400 ha Simmondsia chinensis (Jojoba) plantation. Control was validated with data from the desert, and Impact from the Jojoba. Finally, estimations were made of the energy balance, applying two Penman–Monteith based methods along with observed meteorological data. These estimations were compared with simulated energy fluxes. Control simulates the daytime desert surface 2 m air temperatures (T2) with less than 0.2 °C deviation and the vapour pressure deficit (VPD) to within 0.25 hPa. Desert wind speed (U) is simulated to within 0.5 m s−1 and the net surface radiation (Rn) to 25 W m−2. Soil heat flux (G) is not so accurately simulated by Control (up to 30 W m−2 deviation) and 5 cm soil temperatures (ST5) are simulated to within 1.5 °C. Impact simulates daytime T2 over irrigated vegetation to within 1–1.5 °C, the VPD to 0.5 hPa, Rn to 50 W m−2 and ST5 to within 2 °C. Simulated Impact G deviates up to 40 W m−2, highlighting a need for re-parameterisation or better soil classification, but the overall contribution to the energy balance is small (5–6%). During the night, significant T2 and ST5 cold biases of 2–4 °C are present. Diurnal latent heat values from WRF Impact correspond closely with Penman–Monteith estimation curves, and latent heat magnitudes of 160 W m−2 over the plantation are usual. Simulated plantation sensible heat fluxes are high (450 W m−2) – around 100–110 W m−2 higher than over the surrounding desert. The high relative HFX over the vegetation, driven by high Rn and high surface resistances, indicate that low Bowen ratios should not necessarily be assumed when irrigated plantations are implemented in, and optimized for arid regions. Furthermore, the high plantation T2 magnitudes highlight the importance of considering diurnal dynamics, which drive the evolution of boundary layers, rather than only on daily mean statistics which often indicate an irrigation cooling effect.

Publisher

Copernicus GmbH

Reference59 articles.

1. Abou Kheira, A. and Atta, N.: Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oilseed characteristics, Biomass Bioenerg., 33, 1343–1350, 2009.

2. Allen, R., Pereira, L., Raes, D., and Allen, M.: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper No. 56, Food and Agricultural Organization, Rome, 1998.

3. Alpert, P. and Mandel, M.: Wind variability – an indicator for a mesoclimatic change in Israel, J. Clim. Appl. Meteorol., 25, 1568–1576, https://doi.org/10.1175/1520–0450(1986)0252.0.CO;2, 1986.

4. Ayers, R. S. and Westcot, D. W.: Water Quality For Agriculture, available at: http://www.cabdirect.org/abstracts/19856755033.html;jsessionid=08B1B6FB48B32C38E2994EEEC7EFB14E?freeview=true (last access: 23 September 2013), 1985.

5. Bauer, H.-S., Weusthoff, T., Dorninger, M., Wulfmeyer, V., Schwitalla, T., Gorgas, T., Arpagaus, M., and Warrach-Sagi, K.: Predictive skill of a subset of models participating in D-PHASE in the COPS region, Q. J. Roy. Meteorol. Soc., 137, 287–305, https://doi.org/10.1002/qj.715, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3