Modeling insights from distributed temperature sensing data

Author:

Buck C. R.,Null S. E.

Abstract

Abstract. Distributed Temperature Sensing (DTS) technology can collect abundant high resolution river temperature data over space and time to improve development and performance of modeled river temperatures. These data can also identify and quantify thermal variability of micro-habitat that temperature modeling and standard temperature sampling do not capture. This allows researchers and practitioners to bracket uncertainty of daily maximum and minimum temperature that occurs in pools, side channels, or as a result of cool or warm inflows. This is demonstrated in a reach of the Shasta River in Northern California that receives irrigation runoff and inflow from small groundwater seeps. This approach highlights the influence of air temperature on stream temperatures, and indicates that physically-based numerical models may under-represent this important stream temperature driver. This work suggests DTS datasets improve efforts to simulate stream temperatures and demonstrates the utility of DTS to improve model performance and enhance detailed evaluation of hydrologic processes.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3