FULL WAVEFORM LIDAR EXPLOITATION TECHNIQUE AND ITS EVALUATION IN THE MIXED FOREST HILLY REGION

Author:

Chhatkuli S.,Mano K.,Kogure T.,Tachibana K.,Shimamura H.

Abstract

Abstract. In this paper a full waveform exploitation technique and its evaluation in the mixed forest hilly region is presented. The increment in ground penetration by using the full waveform exploitation technique compared to the discrete LiDAR pulses during autumn and winter season is evaluated. The results showed that the technique used for the full waveform exploitation has effectively increased the ground penetration by 50 % and 20 %, respectively, during autumn and winter in the mixed forest hilly region compared to the discrete return pulses. The accuracy test of the LiDAR derived terrain model constructed from the discrete LiDAR pulses and full waveform LiDAR pulses obtained during autumn and winter has also been performed. The RMSE of the LiDAR derived DTM with 1m grid size constructed from the discrete LiDAR pulses obtained during autumn and winter were 0.73 m and 0.22 m respectively. Likewise, the RMSE of the LiDAR derived DTM constructed from the full waveform LiDAR pulses obtained during autumn and winter were 0.59 m and 0.21 m respectively. The results also showed that by using full waveform return pulses, DTM constructed for both seasons were improved compared to the DTM generated from discrete LiDAR pulses.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Sensing at Local Scales for Operational Forestry;Advances in Global Change Research;2023

2. A Synthetic Algorithm on the Skew-Normal Decomposition for Satellite LiDAR Waveforms;IEEE Transactions on Geoscience and Remote Sensing;2022

3. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data;ISPRS Journal of Photogrammetry and Remote Sensing;2019-02

4. Impact of Slope, Aspect, and Habitat-Type on LiDAR-Derived Digital Terrain Models in a Near Natural, Heterogeneous Temperate Forest;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2017-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3