AUTOMATIC PROCESSING OF MOBILE LASER SCANNER POINT CLOUDS FOR BUILDING FAÇADE DETECTION

Author:

Arachchige N. H.,Perera S. N.,Maas H.-G.

Abstract

Abstract. Currently, data captured by Mobile Laser Scanners (MLS) is becoming a leading source for the modelling of building façade geometry. Automatic processing of MLS point clouds for feature extraction on building facades is a demanding work. Point cloud segmentation and recognition are the most important steps in this context. In this paper, a new approach for automatic and fast processing of MLS data for the detection of building patches while restricting to segment other features is introduced. After filtering of the point clouds, the building façade extraction takes place. An initial building point cluster detection and roughness based point separation within the cluster itself are the preliminary stages of this process. Thereafter points are segmented into planar patches based on the Random Sample Consensus (RANSAC) technique, as most facades are dominated by planar faces. An intelligent seed point selection method is introduced, and growing rules are applied in order to extract the most significant planar features which represent the building facades. Each segmented plane is afterwards processed to recognize the façade features. A rule based partitioning tree, constructed from the 2D geometric knowledge of building features is used for facade feature recognition. The approach has been tested with several urban data sets, and results demonstrate that the method can be applied in an efficient modelling process.

Publisher

Copernicus GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3