PLEIADES HR IN FLIGHT GEOMETRICAL CALIBRATION : LOCATION AND MAPPING OF THE FOCAL PLANE

Author:

de Lussy F.,Greslou D.,Dechoz C.,Amberg V.,Delvit J. M.,Lebegue L.,Blanchet G.,Fourest S.

Abstract

Abstract. The Pleiades system, ORFEO system optical component (Optical and Radar Federated Earth Observation) consists of a constellation of two satellites for very High Resolution panchromatic and multispectral optical observation of the Earth. Its mission is to cover all European civilian needs (mapping, tracking floods and fires) and defence in the category of metric resolution: 0.7m Nadir. The first Pleiades satellite was launched at the end of last year. One of the key objectives of the Pleiades HR (PHR) project is to achieve a location accuracy that will allow the use of images in GIS (Geographical Information System) without geometrical model improvement by refining on ground control points. The image location without refined model was specified with the precision of the most commonly used tool ie the civil GPS. So the location accuracy has been specified at less than 12m for 90% of the images on a nominal satellite configuration. Very special care has been taken all along the PHR project realization to achieve this very good location accuracy. The final touch is given during the in-orbit commissioning phase which lasts until June 2012. The geometric quality implies to tune the parameters involved in the geolocation model (geometric calibration): besides attitude and orbit restitution tuning (not considered here), it consists in estimating the biases between the instrument orientation and the AOCS reference frame, and also the sight line of each detector in the focal plane. This is called static geometrical model. The analysis of dynamic perturbations outside of the model are the second most important image quality objective of in-flight commissioning, not described in this paper. Finally “image quality assessment” consists in evaluating the image quality obtained in the final products. For geolocation model, it is quantified by the absolute geolocation and the pointing accuracies, and it is a main contributor in length alteration and planimetric and altimetric accuracies. In this paper we will present both the different practices we have adopted (their advantages, limitations and complementarities) and the means we are using for the operational assessment of the location quality of PHR images. We will focus on the innovative methods and mention the improvements in progress. To conclude, we will present the very first accuracy results assessed after PHR1A launch on L1 and Sensor products.

Publisher

Copernicus GmbH

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3