AREA-BASED SNOW DAMAGE CLASSIFICATION OF FOREST CANOPIES USING BI- TEMPORAL LIDAR DATA

Author:

Vastaranta M.,Korpela I.,Uotila A.,Hovi A.,Holopainen M.

Abstract

Abstract. Multitemporal LiDAR data provide means for mapping structural changes in forest canopies. We demonstrate the use of area-based estimation method for snow damage assessment. Change features of bi-temporal LiDAR point height distributions were used as predictors in combination with in situ training data. In the winter 2009–2010, snow damages occurred in Hyytiälä (62°N, 24°E), southern Finland. Snow load resulted in broken, bent and fallen trees changing the canopy structure. The damages were documented at the tree level at permanent field plots and dense LiDAR data from 2007 and 2010 were used in the analyses. A 5 × 5-m grid was established in one pine%ndash;spruce stand and change metrics from the LiDAR point height distribution were extracted for the cells. Cells were classified as damaged (n = 43) or undamaged (n = 42) based on the field data. Stepwise logistic regression detected the damaged cells with an overall accuracy of 78.6% (Kappa = 0.57). The best predictors were differences in h-distribution percentage points 5, 35, 40, 50 and 70 of first-or-single return data. The tentative results from the single stand suggest that dense bi-temporal LiDAR data and an area-based approach could be feasible in mapping canopy changes. The accuracy of the point h-distribution is dependent on the pulse density per grid cell. Depending on the time span between LiDAR acquisitions, the natural changes of the h- distributions due to tree growth need to be accounted for as well as differences in the scanning geometry, which can substantially affect the LiDAR h-metrics.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3