Author:
Demantké J.,Mallet C.,David N.,Vallet B.
Abstract
Abstract. This papers presents a multi-scale method that computes robust geometric features on lidar point clouds in order to retrieve the optimal neighborhood size for each point. Three dimensionality features are calculated on spherical neighborhoods at various radius sizes. Based on combinations of the eigenvalues of the local structure tensor, they describe the shape of the neighborhood, indicating whether the local geometry is more linear (1D), planar (2D) or volumetric (3D). Two radius-selection criteria have been tested and compared for finding automatically the optimal neighborhood radius for each point. Besides, such procedure allows a dimensionality labelling, giving significant hints for classification and segmentation purposes. The method is successfully applied to 3D point clouds from airborne, terrestrial, and mobile mapping systems since no a priori knowledge on the distribution of the 3D points is required. Extracted dimensionality features and labellings are then favorably compared to those computed from constant size neighborhoods.
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献