Author:
Tuermer S.,Leitloff J.,Reinartz P.,Stilla U.
Abstract
Abstract. The extraction of vehicles from aerial images provides a wide area traffic situation within a short time. Applications for the gathered data are various and reach from smart routing in the case of congestions to usability validation of roads in the case of disasters. The challenge of the vehicle detection task is finding adequate features which are capable to separate cars from other objects; especially those that look similar. We present an experiment where selected features show their ability of car detection. Precisely, Haar-like and HoG features are utilized and passed to the AdaBoost algorithm for calculating the final detector. Afterwards the classifying power of the features is accurately analyzed and evaluated. The tests a carried out on aerial data from the inner city of Munich, Germany and include small inner city roads with rooftops close by which raise the complexity factor.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献