PARALLEL CREATION OF VARIO-SCALE DATA STRUCTURES FOR LARGE DATASETS

Author:

Meijers M.,Šuba R.,van Oosterom P.

Abstract

Abstract. Processing massive datasets which are not fitting in the main memory of computer is challenging. This is especially true in the case of map generalization, where the relationships between (nearby) features in the map must be considered. In our case, an automated map generalization process runs offline to produce a dataset suitable for visualizing at arbitrary map scale (vario-scale) and efficiently enabling smooth zoom user interactions over the web. Our solution to be able to generalize such large vector datasets is based on the idea of subdividing the workload according to the Fieldtree organization: a multi-level structure of space. It subdivides space regularly into fields (grid cells), at every level with shifted origin. Only features completely fitting within a field are processed. Due to the Fieldtree organization, features on the boundary at a given level will be contained completely in one of the fields of the higher levels. Every field that resides at the same level in the Fieldtree can be processed in parallel, which is advantageous for processing on multicore computer systems. We have tested our method with datasets with upto 880 thousand objects on a machine with 16 cores, resulting in a decrease of runtime with a factor 27 compared to a single sequential process run. This more than linear speed-up indicates also an interesting algorithmic side-effect of our approach.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3