POLINSAR Coherence-Based Regression Analysis of Forest Biomass Using RADARSAT-2 Datasets

Author:

Singh J.,Kumar S.,Kushwaha S. P. S

Abstract

Abstract. Forests play a pivotal role in synchronizing earth’s carbon cycle by absorbing carbon from the atmosphere and storing it in the form of biomass. Researchers today are trying to understand the climatic variations, especially those occurring due to destruction of forest and its corresponding biomass loss. Hence, quantification of various forest parameters such as biomass is imperative for evaluating the carbon. The objective of this research was to exploit the potential of C-band Radarsat-2 Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) technique for analysing the relationship between complex coherence and field-estimated aboveground biomass. Association between the backscatter and the aboveground biomass was also established in the process. To serve our objective, Radarsat-2 interferometric pair dated 4th March, 2013 (master image) and 28th March, 2013 (slave image) were procured for the Barkot Reserve Forest region of Dehradun, India. Field sampling was done for 30 plots (31.62 m x 31.62 m) and stem diameter and tree height were measured in each plot. The study emphasized on the application of POLINSAR coherence instead of using conventional method of relying on backscatter values for retrieving forest biomass. Coherence matrices were utilized for generating complex coherence values for different polarization channels and were regressed against field estimated aboveground biomass. Results indicated a negative linear relationship between complex coherence and aboveground biomass with the cross – polarized coherence showing the highest R2 value of 0.71. Further, the backscatter mechanism when studied with respect to aboveground biomass indicated a positive linear relationship between backscatter values and field estimated aboveground biomass with R2 value of 0.45 and 0.61 for slave and master image respectively. The results suggest that PolInSAR technique, in combination with different modelling approaches, can be adopted for estimating forest biomass.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Based Modeling for Forest Aboveground Biomass Retrieval;2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS);2023-01-27

2. Utilizing geospatial information to implement SDGs and monitor their Progress;Environmental Monitoring and Assessment;2019-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3