Automatic Image Registration Using Free and Open Source Software

Author:

Giri Babu D.,Raja Shekhar S. S.,Chandrasekar K.,Sesha Sai M. V. R.,Diwakar P. G.,Dadhwal V. K.

Abstract

Abstract. Image registration is the most critical operation in remote sensing applications to enable location based referencing and analysis of earth features. This is the first step for any process involving identification, time series analysis or change detection using a large set of imagery over a region. Most of the reliable procedures involve time consuming and laborious manual methods of finding the corresponding matching features of the input image with respect to reference. Also the process, as it involves human interaction, does not converge with multiple operations at different times. Automated procedures rely on accurately determining the matching locations or points from both the images under comparison and the procedures are robust and consistent over time. Different algorithms are available to achieve this, based on pattern recognition, feature based detection, similarity techniques etc. In the present study and implementation, Correlation based methods have been used with a improvement over newly developed technique of identifying and pruning the false points of match. Free and Open Source Software (FOSS) have been used to develop the methodology to reach a wider audience, without any dependency on COTS (Commercially off the shelf) software. Standard deviation from foci of the ellipse of correlated points, is a statistical means of ensuring the best match of the points of interest based on both intensity values and location correspondence. The methodology is developed and standardised by enhancements to meet the registration requirements of remote sensing imagery. Results have shown a performance improvement, nearly matching the visual techniques and have been implemented in remote sensing operational projects. The main advantage of the proposed methodology is its viability in production mode environment. This paper also shows that the visualization capabilities of MapWinGIS, GDAL’s image handling abilities and OSSIM’s correlation facility can be efficiently integrated to effectively use in remote sensing based production environment.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3