UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS – TREE STEM MAPPING IN OPEN STANDS IN COMPARISON TO TERRESTRIAL LASER SCANNER POINT CLOUDS

Author:

Fritz A.,Kattenborn T.,Koch B.

Abstract

Abstract. In both ecology and forestry, there is a high demand for structural information of forest stands. Forest structures, due to their heterogeneity and density, are often difficult to assess. Hence, a variety of technologies are being applied to account for this "difficult to come by" information. Common techniques are aerial images or ground- and airborne-Lidar. In the present study we evaluate the potential use of unmanned aerial vehicles (UAVs) as a platform for tree stem detection in open stands. A flight campaign over a test site near Freiburg, Germany covering a target area of 120 × 75 [m2] was conducted. The dominant tree species of the site is oak (quercus robur) with almost no understory growth. Over 1000 images with a tilt angle of 45° were shot. The flight pattern applied consisted of two antipodal staggered flight routes at a height of 55 [m] above the ground. We used a Panasonic G3 consumer camera equipped with a 14–42 [mm] standard lens and a 16.6 megapixel sensor. The data collection took place in leaf-off state in April 2013. The area was prepared with artificial ground control points for transformation of the structure-from-motion (SFM) point cloud into real world coordinates. After processing, the results were compared with a terrestrial laser scanner (TLS) point cloud of the same area. In the 0.9 [ha] test area, 102 individual trees above 7 [cm] diameter at breast height were located on in the TLS-cloud. We chose the software CMVS/PMVS-2 since its algorithms are developed with focus on dense reconstruction. The processing chain for the UAV-acquired images consists of six steps: a. cleaning the data: removing of blurry, under- or over exposed and off-site images; b. applying the SIFT operator [Lowe, 2004]; c. image matching; d. bundle adjustment; e. clustering; and f. dense reconstruction. In total, 73 stems were considered as reconstructed and located within one meter of the reference trees. In general stems were far less accurate and complete as in the TLS-point cloud. Only few stems were considered to be fully reconstructed. From the comparison of reconstruction achievement with respect to height above ground, we can state that reconstruction accuracy decreased in the crown layer of the stand. In addition we were cutting 50 [cm] slices in z-direction and applied a robust cylinder fit to the stem slices. Radii of the TLS-cloud and the SFM-cloud surprisingly correlated well with a Pearson's correlation coefficient of r = 0.696. This first study showed promising results for UAV-based forest structure modelling. Yet, there is a demand for additional research with regard to vegetation stages, flight pattern, processing setup and the utilisation of spectral information.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3