Noise Filtering of Remotely Sensed Images using Iterative Thresholding of Wavelet and Curvelet Transforms

Author:

Ansari R. A.,Mohan B. K.

Abstract

Abstract. This article presents techniques for noise filtering of remotely sensed images based on Multi-resolution Analysis (MRA). Multiresolution techniques provide a coarse-to-fine and scale-invariant decomposition of images for image interpretation. The multiresolution image analysis methods have the ability to analyze the image in an adaptive manner, capturing local information as well as global information. Further, noise being one of the biggest problems in image analysis and interpretation for further processing, is effectively handled by multi-resolution methods. The paper aims at the analysis of noise filtering of image using wavelets and curvelets on high resolution multispectral images acquired by the Quickbird and medium resolution Landsat Thematic Mapper satellite systems. To improve the performance of noise filtering an iterative thresholding scheme for wavelets and curvelets is proposed for restoring the image from its noisy version. Two comparative measures are used for evaluation of the performance of the methods for denoising. One of them is the signal to noise ratio and the second is the ability of the noise filtering scheme to preserve the sharpness of the edges. By both of these comparative measures, the curvelet with iterative threshold has proved to be better than the others. Results are illustrated using Quickbird and Landsat images for fixed and iterative thresholding.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speckle noise reduction of Sentinel-1 SAR data using fast fourier transform temporal filtering to monitor paddy field area;IOP Conference Series: Earth and Environmental Science;2021-04-01

2. Noise Filtering in High-Resolution Satellite Images Using Composite Multiresolution Transforms;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2018-12

3. SAR Image Despeckling Using Refined Lee Filter;2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics;2015-08

4. A no a priori knowledge estimation of the impulse response for satellite image noise reduction;Advances in Space Research;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3