EFFICIENT AND ACCURATE INDOOR LOCALIZATION USING LANDMARK GRAPHS

Author:

Gu F.,Kealy A.,Khoshelham K.,Shang J.

Abstract

Indoor localization is important for a variety of applications such as location-based services, mobile social networks, and emergency response. Fusing spatial information is an effective way to achieve accurate indoor localization with little or with no need for extra hardware. However, existing indoor localization methods that make use of spatial information are either too computationally expensive or too sensitive to the completeness of landmark detection. In this paper, we solve this problem by using the proposed landmark graph. The landmark graph is a directed graph where nodes are landmarks (e.g., doors, staircases, and turns) and edges are accessible paths with heading information. We compared the proposed method with two common Dead Reckoning (DR)-based methods (namely, Compass + Accelerometer + Landmarks and Gyroscope + Accelerometer + Landmarks) by a series of experiments. Experimental results show that the proposed method can achieve 73% accuracy with a positioning error less than 2.5 meters, which outperforms the other two DR-based methods.

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Landmarks-based Accuracy Evaluation method for Indoor Pedestrian Localization Using Smartphones;Proceedings of the 5th International Conference on Computer Information and Big Data Applications;2024-04-26

2. A Multi-Floor Indoor Pedestrian Localization Method Using Landmarks Detection for Different Holding Styles;Mobile Information Systems;2021-03-01

3. L5IN: Overview of an Indoor Navigation Pilot Project;Remote Sensing;2021-02-09

4. Landmark Graph-Based Indoor Localization;IEEE Internet of Things Journal;2020-09

5. Infrastructure-Independent Indoor Localization and Navigation;ACM Computing Surveys;2020-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3