Multi-sensor multi-resolution image fusion for improved vegetation and urban area classification

Author:

Kumar U.,Milesi C.,Nemani R. R.,Basu S.

Abstract

Abstract. In this paper, we perform multi-sensor multi-resolution data fusion of Landsat-5 TM bands (at 30 m spatial resolution) and multispectral bands of World View-2 (WV-2 at 2 m spatial resolution) through linear spectral unmixing model. The advantages of fusing Landsat and WV-2 data are two fold: first, spatial resolution of the Landsat bands increases to WV-2 resolution. Second, integration of data from two sensors allows two additional SWIR bands from Landsat data to the fused product which have advantages such as improved atmospheric transparency and material identification, for example, urban features, construction materials, moisture contents of soil and vegetation, etc. In 150 separate experiments, WV-2 data were clustered in to 5, 10, 15, 20 and 25 spectral classes and data fusion were performed with 3x3, 5x5, 7x7, 9x9 and 11x11 kernel sizes for each Landsat band. The optimal fused bands were selected based on Pearson product-moment correlation coefficient, RMSE (root mean square error) and ERGAS index and were subsequently used for vegetation, urban area and dark objects (deep water, shadows) classification using Random Forest classifier for a test site near Golden Gate Bridge, San Francisco, California, USA. Accuracy assessment of the classified images through error matrix before and after fusion showed that the overall accuracy and Kappa for fused data classification (93.74%, 0.91) was much higher than Landsat data classification (72.71%, 0.70) and WV-2 data classification (74.99%, 0.71). This approach increased the spatial resolution of Landsat data to WV-2 spatial resolution while retaining the original Landsat spectral bands with significant improvement in classification.

Publisher

Copernicus GmbH

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3