CAMERA CONSTANT IN THE CASE OF TWO MEDIA PHOTOGRAMMETRY

Author:

Agrafiotis P.,Georgopoulos A.

Abstract

Abstract. Refraction is the main cause of geometric distortions in the case of two media photogrammetry. However, this effect cannot be compensated and corrected by a suitable camera calibration procedure (Georgopoulos and Agrafiotis, 2012). In addition, according to the literature (Lavest et al. 2000), when the camera is underwater, the effective focal length is approximately equal to that in the air multiplied by the refractive index of water. This ratio depends on the composition of the water (salinity, temperature, etc.) and usually ranges from 1.10 to 1.34. It seems, that in two media photogrammetry, the 1.33 factor used for clean water in underwater cases does not apply and the most probable relation of the effective camera constant to the one in air is depending of the percentages of air and water within the total camera-to-object distance. This paper examines this relation in detail, verifies it and develops it through the application of calibration methods using different test fields. In addition the current methodologies for underwater and two-media calibration are mentioned and the problem of two-media calibration is described and analysed.

Publisher

Copernicus GmbH

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monocular In-flight Measurement of Airfoil Deflections;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2023-01-20

2. Automatically Guided Selection of a Set of Underwater Calibration Images;Journal of Marine Science and Engineering;2022-05-27

3. An Efficient Solution to Ray Tracing Problems in Multimedia Photogrammetry for Flat Refractive Interfaces;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2022-03

4. Underwater Survey for Oil and Gas Industry: A Review of Close Range Optical Methods;Remote Sensing;2021-07-15

5. Learning from Synthetic Data: Enhancing Refraction Correction Accuracy for Airborne Image-Based Bathymetric Mapping of Shallow Coastal Waters;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2021-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3