THE EFFECT OF PANSHARPENING ALGORITHMS ON THE RESULTING ORTHOIMAGERY

Author:

Agrafiotis P.,Georgopoulos A.,Karantzalos K.

Abstract

This paper evaluates the geometric effects of pansharpening algorithms on automatically generated DSMs and thus on the resulting orthoimagery through a quantitative assessment of the accuracy on the end products. The main motivation was based on the fact that for automatically generated Digital Surface Models, an image correlation step is employed for extracting correspondences between the overlapping images. Thus their accuracy and reliability is strictly related to image quality, while pansharpening may result into lower image quality which may affect the DSM generation and the resulting orthoimage accuracy. To this direction, an iterative methodology was applied in order to combine the process described by Agrafiotis and Georgopoulos (2015) with different pansharpening algorithms and check the accuracy of orthoimagery resulting from pansharpened data. Results are thoroughly examined and statistically analysed. The overall evaluation indicated that the pansharpening process didn’t affect the geometric accuracy of the resulting DSM with a 10m interval, as well as the resulting orthoimagery. Although some residuals in the orthoimages were observed, their magnitude cannot adversely affect the accuracy of the final orthoimagery.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TanDEM-X DEM: Comparative performance review employing LIDAR data and DSMs;ISPRS Journal of Photogrammetry and Remote Sensing;2020-02

2. Improving Satellite-Aerial Image Matching Success Rate by Image Fusion;2018 2nd European Conference on Electrical Engineering and Computer Science (EECS);2018-12

3. A Method to Improve Matching Success Rate between KOMPSAT-3A Imagery and Aerial Ortho-Images;KOREAN J REMOTE SENS;2018

4. 2.5D change detection from satellite imagery to monitor small-scale mining activities in the Democratic Republic of the Congo;International Journal of Applied Earth Observation and Geoinformation;2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3