Author:
Symeonakis E.,Petroulaki K.,Higginbottom T.
Abstract
Mapping woody cover over large areas can only be effectively achieved using remote sensing data and techniques. The longest continuously operating Earth-observation program, the Landsat series, is now freely-available as an atmospherically corrected, cloud masked surface reflectance product. The availability and length of the Landsat archive is thus an unparalleled Earth-observation resource, particularly for long-term change detection and monitoring. Here, we map and monitor woody vegetation cover in the Northwest Province of South Africa, an area of more than 100,000 km<sup>2</sup> covered by 11 Landsat scenes. We employ a multi-temporal approach with dry-season data from 7 epochs between 1990 to 2015. We use 0.5 m-pixel colour aerial photography to collect > 15,000 point samples for training and validating Random Forest classifications of (i) woody vegetation cover, (ii) other vegetation types (including grasses and agricultural land), and (iii) non-vegetated areas (i.e. urban areas and bare land). Overall accuracies for all years are around 80 % and overall kappa between 0.45 and 0.66. Woody vegetation covers a quarter of the Province and is the most accurately mapped class (balanced accuracies between 0.74-0.84 for the 7 epochs). There is a steady increase in woody vegetation cover over the 25-year-long period of study in the expense of the other vegetation types. We identify potential woody vegetation encroachment 'hot-spots' where mitigation measures might be required and thus provide a management tool for the prioritisation of such measures in degraded and food-insecure areas.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献