Prospect inversion for indirect estimation of leaf dry matter content and specific leaf area

Author:

Ali A.,Darvishzadeh R.,Skidmore A.-K.,Duren I.-V.,Heiden U.,Heurich M.

Abstract

Abstract. Quantification of vegetation properties plays an indispensable role in assessments of ecosystem function with leaf dry mater content (LDMC) and specific leaf area (SLA) being two important vegetation properties. Methods for fast, reliable and accurate measurement of LDMC and SLA are still lacking. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate these two leaf parameters. Inversion of PROSPECT traditionally aims at quantifying its direct input parameters rather than identifying the parameters which can be derived indirectly from the input parameters. The technique has been tested here to indirectly model these parameters for the first time. Biophysical parameters such as leaf area, as well as fresh and dry weights of 137 leaf samples were measured during a field campaign in July 2013 in the mixed mountain forests of the Bavarian Forest National Park, Germany. Reflectance and transmittance of the leaf samples were measured using an ASD field spec III equipped with an integrating sphere. The PROSPECT model was inverted using a look-up table (LUT) approach for the NIR/SWIR region of the spectrum. The retrieved parameters were evaluated using their calculated R2 and normalized root mean square error (nRMSE) values with the field measurements. Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered. The results indicate that the leaf traits studied can be quantified as accurately as the direct input parameters of PROSPECT. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy and in the landscape by using hyperspectral remote sensing data.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3