Robust extraction of image correspondences exploiting the image scene geometry and approximate camera orientation

Author:

Alsadik B.,Remondino F.,Menna F.,Gerke M.,Vosselman G.

Abstract

Abstract. Image-based modeling techniques are an important tool for producing 3D models in a practical and cost effective manner. Accurate image-based models can be created as long as one can retrieve precise image calibration and orientation information which is nowadays performed automatically in computer vision and photogrammetry. The first step for orientation is to have sufficient correspondences across the captured images. Keypoint descriptors like SIFT or SURF are a successful approach for finding these correspondences. The extraction of precise image correspondences is crucial for the subsequent image orientation and image matching steps. Indeed there are still many challenges especially with wide-baseline image configuration. After the extraction of a sufficient and reliable set of image correspondences, a bundle adjustment is used to retrieve the image orientation parameters. In this paper, a brief description of our previous work on automatic camera network design is initially reported. This semi-automatic procedure results in wide-baseline high resolution images covering an object of interest, and including approximations of image orientations, a rough 3D object geometry and a matching matrix indicating for each image its matching mates. The main part of this paper will describe the subsequent image matching where the pre-knowledge on the image orientations and the pre-created rough 3D model of the study object is exploited. Ultimately the matching information retrieved during that step will be used for a precise bundle block adjustment. Since we defined the initial image orientation in the design of the network, we can compute the matching matrix prior to image matching of high resolution images. For each image involved in several pairs that is defined in the matching matrix, we detect the corners or keypoints and then transform them into the matching images by using the designed orientation and initial 3D model. Moreover, a window is defined for each corner and its initial correspondence in the matching images. A SIFT or SURF matching is implemented between every matching window to find the homologous points. This is followed by Least Square Matching LSM to refine the correspondences for a sub-pixel localization and to avoid inaccurate matches. Image matching is followed by a bundle adjustment to orient the images automatically to finally have a sparse 3D model. We used the commercial software Photomodeler Scanner 2010 for implementing the bundle adjustment since it reports a number of accuracy indices which are necessary for the evaluation purposes. The experimental test of comparing the automated image matching of four pre-designed streopairs shows that our approach can provide a high accuracy and effective orientation when compared to the results of commercial and open source software which does not exploit the pre-knowledge about the scene.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3