3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS

Author:

Troisi S.,Del Pizzo S.,Gaglione S.,Miccio A.,Testa R. L.

Abstract

Abstract. In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells) is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3