A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases

Author:

Chen J.,Venables D. S.

Abstract

Abstract. Accurate absorption spectra of gases in the near-ultraviolet (300 to 400 nm) are essential in atmospheric observations and laboratory studies. This paper describes a novel incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for measuring very weak absorption spectra from 335 to 375 nm. The instrument performance was validated against the 3B1−X1A1 transition of SO2. The measured absorption varied linearly with SO2 column density and the resulting spectrum agrees well with published spectra. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably. In the absorption minimum between the Huggins and Chappuis bands, our absorption spectra fall at the lower range of reported ozone absorption cross-sections. The spectra of the ketones agree with prior spectra at moderate absorptions, but differ significantly at the limits of other instruments' sensitivity. The collision-induced absorption of the O4 dimer at 360.5 nm was also measured and found to have a maximum cross-section of ca. 4.0 × 10−46 cm5 molecule−2. We demonstrate the application of the instrument to quantifying low concentrations of the short-lived radical, BrO, in the presence of stronger absorptions from Br2 and O3.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3