The capabilities of Sentinel-MSI (2A/2B) and Landsat-OLI (8/9) in seagrass and algae species differentiation using spectral reflectance

Author:

Bannari Abderrazak,Ali Thamer Salim,Abahussain Asma

Abstract

Abstract. This paper assesses the reflectance difference values between the respective spectral bands in the visible and near-infrared (VNIR) of Sentinel 2A/2B Multi-Spectral Instrument (MSI) and Landsat 8/9 Operational Land Imager (OLI) sensors for seagrass, algae, and mixed species discrimination and monitoring in a shallow marine environment southeast of Bahrain Island in the Arabian Gulf. To achieve these, a field survey was conducted to collect samples of seawater, underwater sediments, seagrass (Halodule uninervis and Halophila stipulacea), and algae (green and brown). In addition, an experimental mode was established in a goniometric laboratory to simulate the marine environment, and spectral measurements were performed using an Analytical Spectral Devices (ASD) spectroradiometer. Measured spectra and their transformation using the continuum-removed reflectance spectral (CRRS) approach were analyzed to assess spectral separability among separate or mixed species at varying coverage rates. Afterward, the spectra were resampled and convolved in the solar-reflective spectral bands of MSI and OLI sensors and converted into water vegetation indices (WVIs) to investigate the potential of red, green, and blue bands for seagrass and algae species discrimination. The results of spectral and CRRS analyses highlighted the importance of the blue, green, and near-infrared (NIR) wavelengths for seagrass and algae detection and likely discrimination based on hyperspectral measurements. However, when resampled and convolved in MSI and OLI bands, spectral information loses the specific and unique absorption features and becomes more generalized and less precise. Therefore, relying on the multispectral bandwidth of MSI and OLI sensors, it is difficult or even impossible to differentiate or to map seagrass and algae individually at the species level. Instead of the red band, the integration of the blue or the green band in WVI increases their power to discriminate submerged aquatic vegetation (SAV), particularly the water adjusted vegetation index (WAVI), water enhanced vegetation index (WEVI), and water transformed difference vegetation index (WTDVI). These results corroborate the spectral and the CRRS analyses. However, despite the power of blue wavelength to penetrate deeper into the water, it also leads to a relative overestimation of dense SAV coverage due to more scattering in this part of the spectrum. Furthermore, statistical fits (p<0.05) between the reflectance in the respective VNIR bands of MSI and OLI revealed excellent linear relationships (R2 of 0.999) with insignificant root mean square difference (RMSD) (≤ 0.0015). Important agreement (0.63 ≤ R2 ≤ 0.96) was also obtained between respective WVI regardless of the integrated spectral bands (i.e., red, green, and blue), yielding insignificant RMSD (≤ 0.01). Accordingly, these results pointed out that MSI and OLI sensors are spectrally similar, and their data can be used jointly to monitor accurately the spatial distribution of SAV and its dynamic in time and space in shallow marine environments, provided that rigorous data pre-processing issues are addressed.

Funder

Arabian Gulf University

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3