Classification of Northern Hemisphere stratospheric ozone and water vapor profiles by meteorological regime

Author:

Follette-Cook M. B.,Hudson R. D.,Nedoluha G. E.

Abstract

Abstract. The subtropical and polar upper troposphere fronts and the polar vortex serve as the boundaries to divide the Northern Hemisphere into four meteorological regimes. These regimes are defined as (1) the arctic regime – within the polar vortex, (2) the polar regime – between the polar front and the polar vortex, or when the latter is not present, the pole, (3) the midlatitude regime – between the subtropical and polar fronts, and (4) the tropical regime – between the equator and the subtropical front. Data from the Halogen Occultation Experiment (HALOE) and the Stratospheric Aerosol and Gas Experiment II (SAGE II) were used to show that within each meteorological regime, ozone and water profiles are characterized by unique ozonepause and hygropause heights. Daily measurements and seven-year (1997–2003) monthly climatologies showed that, within each meteorological regime, both constituents exhibited distinct profile shapes from the tropopause up to approximately 20 km. This distinction was most pronounced in the winter and spring months, and weak in the summer and fall. Despite differences in retrieval techniques and sampling between the SAGE and HALOE instruments, the seven-year monthly climatologies calculated for each regime agreed well for both species below ~22 km. Given that profiles of ozone and water vapor exhibit unique profiles shapes within each regime in the UTLS, trends in this region will therefore be the result of both changes within each meteorological regime, and changes in the relative contribution of each regime to a given zonal band over time.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3