Polymer composite based microbolometers

Author:

Nocke A.

Abstract

Abstract. This work focuses on the basic suitability assessment of polymeric materials and the corresponding technological methods for the production of infrared (micro-) bolometer arrays. The sensitive layer of the microbolometer arrays in question is composed of an electrically conductive polymer composite. Semi-conducting tellurium and vanadium dioxide, as well as metallic silver, are evaluated concerning their suitability as conductive filling agents. The composites with the semi-conducting filling agents display the higher temperature dependence of electrical resistance, while the silver composites exhibit better noise performance. The particle alignment – homogeneous and chain-shaped alike – within the polymer matrix is characterized regarding the composites' electrical properties. For the production of microbolometer arrays, a technology chain is introduced based on established coat-forming and structuring standard technologies from the field of polymer processing, which are suitable for the manufacture of a number of parallel structures. To realize the necessary thermal isolation of the sensitive area, all pixels are realized as self-supporting structures by means of the sacrificial layer method. Exemplarily, 2 × 2 arrays with the three filling agents were manufactured. The resulting sensor responsivities lie in the range of conventional microbolometers. Currently, the comparatively poor thermal isolation of the pixels and the high noise levels are limiting sensor quality. For the microbolometers produced, the thermal resolution limit referring to the temperature of the object to be detected (NETD) has been measured at 6.7 K in the superior sensitive composite layer filled with silver particles.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3