Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements

Author:

Kuglitsch F. G.,Reichstein M.,Beer C.,Carrara A.,Ceulemans R.,Granier A.,Janssens I. A.,Koestner B.,Lindroth A.,Loustau D.,Matteucci G.,Montagnani L.,Moors E. J.,Papale D.,Pilegaard K.,Rambal S.,Rebmann C.,Schulze E. D.,Seufert G.,Verbeeck H.,Vesala T.,Aubinet M.,Bernhofer C.,Foken T.,Grünwald T.,Heinesch B.,Kutsch W.,Laurila T.,Longdoz B.,Miglietta F.,Sanz M. J.,Valentini R.

Abstract

Abstract. Water-use efficiency (WUE) has been recognized as an important characteristic of vegetation productivity in various natural scientific disciplines for decades, but only recently at the ecosystem level, where different ways exist to characterize water-use efficiency. Hence, the objective of this research was (a) to systematically compare different ways of calculating ecosystem water-use efficiency (WUEe) from eddy-covariance measurements, (b) quantify the diurnal, seasonal and interannual variability of WUEe in relation to meteorological conditions, and (c) analyse between-site variability of WUEe as affected by vegetation type and climatic conditions, across sites in European forest ecosystems. Day-to-day variability of gross primary productivity (GPP) and evapotranspiration (ET) were more strongly coupled than net ecosystem production (NEP) and ET, obviously because NEP also depends on the respiration that is not heavily coupled to water fluxes. However, the slope of daytime NEP versus ET (mNEP) from half-hourly measurements of a single day may also be used as a WUEe-estimate giving very similar results to those of the GPP-ET slope (mGPP), since the diurnal variation is dominated by GPP. Since ET is the sum of transpiration (linked to GPP) and evaporation from wet vegetation and soil surfaces (not linked to GPP) we expected that WUEe is increasing when days after rain are excluded from the analysis. However only very minor changes were found, justifying an analysis of WUEe related to vegetation type. In most of the studied ecosystems the instantaneous WUEGPP was quite sensitive to diurnally varying meteorological conditions and tended to decline from the morning to the afternoon by more than 50% because of increasing vapour pressure deficits (VPD). Seasonally, WUEGPP increased with a rising monthly precipitation sum and rising average monthly temperatures up to a threshold of 11, 14 and 18°C in boreal, temperate and Mediterranean ecosystems, respectively. Across all sites, the highest monthly WUEGPP-values were detected at times of positive anomalies of summer-precipitation. During drought periods with high temperatures, high VPD, little precipitation and low soil water content, the water-use efficiency of gross carbon uptake (WUEGPP) tended to decrease in all forest types because of a stronger decline of GPP compared to ET. However the largest variation of growing season WUEGPP was found between-sites and significantly related to vegetation type: WUEGPP was highest in ecosystems dominated by deciduous trees ranging from 5.0 g CO2 kg H2O−1 for temperate broad-leaved deciduous forests (TD), to 4.5 for temperate mixed forests (TM), 3.5 for temperate evergreen conifers (TC), 3.4 for Mediterranean broad-leaved deciduous forests (MD), 3.3 for Mediterranean broad-leaved evergreen forests (Mbeg), 3.1 for Mediterranean evergreen conifers (MC), 2.9 for boreal evergreen conifers (BC) and only 1.2 g CO2 kg H2O−1 for a boreal wetland site (BT). Although vegetation type and meteorology co-vary, the WUEGPP variation was hardly related to meteorology, as we could show by comparing similar meteorological conditions only. Furthermore we compared across-site WUEGPP only under conditions when the 10% high GPP rates were exhibited. The between site differences remained, and at all sites ecosystem reached higher WUEGPP levels under this condition. This means when vegetation is most productive usually it also maximises the amount of carbon gained per water lost. Overall our results show that water-use efficiency exhibits a strong time-scale dependency in the sense that at longer time-scale meteorological conditions play a smaller role compared to shorter time scale. Moreover, we highlight the role of vegetation in determining carbon-water relation at ecosystem level. Consequently, all predictions of changing carbon-water cycle under changing climate should take into this role and the differences between vegetation types. These results show the strong time-scale dependency of water-use efficiency

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3