Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography

Author:

Handy Mark R.ORCID,Schmid Stefan M.ORCID,Paffrath Marcel,Friederich Wolfgang,

Abstract

Abstract. Based on recent results of AlpArray, we propose a new model of Alpine collision that involves subduction and detachment of thick (∼ 180 km) European lithosphere. Our approach combines teleseismic P-wave tomography and existing local earthquake tomography (LET), allowing us to image the Alpine slabs and their connections with the overlying orogenic lithosphere at an unprecedented resolution. The images call into question the conventional notion that downward-moving lithosphere and slabs comprise only seismically fast lithosphere. We propose that the European lithosphere is heterogeneous, locally containing layered positive and negative Vp anomalies of up to 5 %–6 %. We attribute this layered heterogeneity to seismic anisotropy and/or compositional differences inherited from the Variscan and pre-Variscan orogenic cycles rather than to thermal anomalies. The lithosphere–asthenosphere boundary (LAB) of the European Plate therefore lies below the conventionally defined seismological LAB. In contrast, the lithosphere of the Adriatic Plate is thinner and has a lower boundary approximately at the base of strong positive Vp anomalies at 100–120 km. Horizontal and vertical tomographic slices reveal that beneath the central and western Alps, the European slab dips steeply to the south and southeast and is only locally still attached to the Alpine lithosphere. However, in the eastern Alps and Carpathians, this slab is completely detached from the orogenic crust and dips steeply to the north to northeast. This along-strike change in attachment coincides with an abrupt decrease in Moho depth below the Tauern Window, the Moho being underlain by a pronounced negative Vp anomaly that reaches eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted as representing hot upwelling asthenosphere that heated the overlying crust, allowing it to accommodate Neogene orogen-parallel lateral extrusion and thinning of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the east. A European origin of the northward-dipping, detached slab segment beneath the eastern Alps is likely since its down-dip length matches estimated Tertiary shortening in the eastern Alps accommodated by originally south-dipping subduction of European lithosphere. A slab anomaly beneath the Dinarides is of Adriatic origin and dips to the northeast. There is no evidence that this slab dips beneath the Alps. The slab anomaly beneath the Northern Apennines, also of Adriatic origin, hangs subvertically and is detached from the Apenninic orogenic crust and foreland. Except for its northernmost segment where it locally overlies the southern end of the European slab of the Alps, this slab is clearly separated from the latter by a broad zone of low Vp velocities located south of the Alpine slab beneath the Po Basin. Considered as a whole, the slabs of the Alpine chain are interpreted as highly attenuated, largely detached sheets of continental margin and Alpine Tethyan oceanic lithosphere that locally reach down to a slab graveyard in the mantle transition zone (MTZ).

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3